Overview of June 2013 Flood and Landslides with focus on Darchula Disaster

Er. Prakash Paudel
Er. Shital Babu Regmee
Mr. Surya Nath Upadhyay

Jalsrot Vikas Sanstha (JVS)/GWP Nepal
July, 2013
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Historical extreme events</td>
<td>1</td>
</tr>
<tr>
<td>2. June 2013 Flood Events</td>
<td>2</td>
</tr>
<tr>
<td>General</td>
<td>2</td>
</tr>
<tr>
<td>Hydro-meteorological information of western Nepal</td>
<td>3</td>
</tr>
<tr>
<td>3. Flood and Landslides in India</td>
<td>6</td>
</tr>
<tr>
<td>4. Severe Mahakali Flood at Darchula Headquarter</td>
<td>7</td>
</tr>
<tr>
<td>5. Impression on Flood Event of Darchula</td>
<td>9</td>
</tr>
<tr>
<td>6. Effect of Mahakali Flood on Kanchanpur</td>
<td>10</td>
</tr>
<tr>
<td>7. Public Reaction</td>
<td>12</td>
</tr>
<tr>
<td>8. A legalistic view on the flooding at Darchula and Mahakali River</td>
<td>13</td>
</tr>
<tr>
<td>9. Conclusions</td>
<td>14</td>
</tr>
<tr>
<td>10. Recommendations</td>
<td>15</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Rainfall in the region: India
Table 2: Rainfall records at Dipayal for 4 consecutive days

List of Figures

Figure 1: Major Rivers of Nepal
Figure 2: Monsoon winds
Figure 3: Village Building collapsed in Kanchanpur
Figure 4: Devastation of Darchula HQ
Figure 5: Rainfall in Dipayal, Nepal (June 17, 2013)
Figure 6: Accumulated rainfall
Figure 7: 24 hour total precipitation
Figure 8: Flood Hydrograph for Mahakali
Figure 9: Road to Gaurikund collapsed
Figure 10: Kedarnath city washed away
Figure 11: Under sluice Spillway Section
Figure 12: Dhauli Ganga meets Mahakali d/s of Dam site
Figure 13: N. India & W. Nepal with common Glacier
Figure 14: Deposition in India, Scouring in Nepal
Figure 15: Mahakali River in Banbasa-Kanchanpur
Figure 16: Nepal- India suspension bridge
Figure 17: River Mahakali in fury
Figure 18: Rescue and rehabilitation work
Figure 19: Attack by the flood on settlement
Figure 20: Public opinion
1. **Introduction**

 a. Background

 All river systems in Nepal flow north to south and drain to the main River Ganges. The rivers are lifeline for the people of Nepal. The rivers are utilized for domestic use, hydropower generation and many other uses.

 ![Major Rivers of Nepal](image.png)

 Figure 1: Major Rivers of Nepal

 However, in every rainy season, especially in monsoon period, these rivers are cited as the cause of devastation, disaster and havoc due to floods, inundation and mass waste (avalanche, soil erosion, landslides and river bank erosion)

 b. Historical Extreme Events:

 About 26 major events of floods, cloudbursts, Glacial Lake Outburst Floods (GLOFs), Infrastructure Failure Outburst Flood (IFOF), landslides have been recorded between the year 1958-2013 (June). The major events of floods were found in the rivers Kosi, Bagmati, Narayani (Sapta Gandaki) and Karnali. The moderate events were found in the rivers Kankai, Kamala, Seti Gandaki, Kali Gandaki, Trishuli, Tinau, West Rapti, and Mahakali. The flood Events were also recorded in the rivers SunKosi, Balephi, Budhigandaki, East Rapti, Babai, Andhikhola, etc.
Government of Nepal, Ministry of home affairs has the records of loss of lives due to various disaster events including flood, landslide, inundation, fire, thunderbolt, windstorm, etc. As per the data for the last ten years out of the total loss of lives of 3,691 person, 2,141 (58%) are due to water induced disasters (WID). Similarly, during recorded 8-years loss of property is found equivalent to NRs 1,240 billion, out of which NRs 931 billion (75%) is due to WID.

2. June 2013 Flood Events
 a. General

Mid June of 2013 saw unprecedented rainfall in Uttarakhand state of India and Far-western region of Nepal. The cloud outburst was due to simultaneous activation of monsoon arms from eastern and south-western direction. Broad advancement and confluence of the monsoon winds is shown in Figure 2.

Due to the flood generated by the rainfall, heavy loss of land and property in Darchula and Kanchanpur districts by Mahakakali river were experienced. Also, the normal cases of bank cutting and inundations were reported in Narayani and Tinau rivers, besides events of inundation and bank cutting information came from some central and eastern parts of Nepal. Huge losses of land and houses were caused by the floods of Karnali river in Bardia district.

Figure 2: Monsoon winds
Figure 3: Village Building collapsed in Kanchanpur
Figure 4: Devastation of Darchula HQ
b. Hydro-meteorological Information of Western Nepal

Rainfall

There was severe rainfall due to cloud outburst in the referred location. The rainfall in different parts of Uttarakhand is shown in Table 1. The excess heavy rainfall was observed in all the districts of Uttarakhand. It was more than eight times of normal rainfall in Dehradun and more than double in Pithauragarh district in that period.

The rainfall with hourly distribution in Dipayal station in Nepal is shown in figure 5. There was recorded daily rainfall of 80.4 mm in June 16 and 221.8 mm in June 17 at this station. Similarly, rainfall pattern in these areas of Nepal and India are depicted in the figures 6 and 7. All the records show that the rainfall far exceeded the normal and was main reason for the unprecedented flood in the region.

Table 1: Rainfall in the region: India
(Rainfall Data of Uttarakhand Districts as per IMD up to June 19, 2013)

<table>
<thead>
<tr>
<th>STATE/UT/MET.SUBDIVISION</th>
<th>ACTUAL (mm)</th>
<th>NORM (mm)</th>
<th>%DEP</th>
<th>CAT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTTARAKHAND, India</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ALMORA</td>
<td>234.4</td>
<td>67.1</td>
<td>249%</td>
<td>E</td>
</tr>
<tr>
<td>2 BAGESHWAR</td>
<td>455.7</td>
<td>67.1</td>
<td>579%</td>
<td>E</td>
</tr>
<tr>
<td>3 CHAMOLI</td>
<td>375.6</td>
<td>52.5</td>
<td>615%</td>
<td>E</td>
</tr>
<tr>
<td>4 CHAMPAWAT</td>
<td>427</td>
<td>85.7</td>
<td>398%</td>
<td>E</td>
</tr>
<tr>
<td>5 DEHRADUN</td>
<td>644.5</td>
<td>75</td>
<td>759%</td>
<td>E</td>
</tr>
<tr>
<td>6 GARHWAL PAURI</td>
<td>205.1</td>
<td>43.9</td>
<td>367%</td>
<td>E</td>
</tr>
<tr>
<td>7 GARHWAL TEHRI</td>
<td>356.9</td>
<td>61</td>
<td>485%</td>
<td>E</td>
</tr>
<tr>
<td>8 HARDWAR</td>
<td>342.7</td>
<td>47.9</td>
<td>615%</td>
<td>E</td>
</tr>
<tr>
<td>9 NAINITAL</td>
<td>586.2</td>
<td>89.8</td>
<td>553%</td>
<td>E</td>
</tr>
<tr>
<td>10 PITHORAGARH</td>
<td>320.3</td>
<td>154.2</td>
<td>208%</td>
<td>E</td>
</tr>
<tr>
<td>11 RUDRAPRAYAG</td>
<td>479.5</td>
<td>102.8</td>
<td>366%</td>
<td>E</td>
</tr>
<tr>
<td>12 UDHAM SINGH NAGAR</td>
<td>206.5</td>
<td>70.9</td>
<td>191%</td>
<td>E</td>
</tr>
<tr>
<td>13 UTTARKASHI</td>
<td>475.9</td>
<td>66.1</td>
<td>620%</td>
<td>E</td>
</tr>
</tbody>
</table>

Source Indian Meteorological Department (IMD)

Note: IMD Map showing 322 mm. of Rainfall over Uttarakhand during the week 13-06-2013 to 19-06-2013 (847% of Normal for Uttarakhand for this period)
Figure 5: Rainfall in Dipayal, Nepal (June 17, 2013)

Figure 6: Accumulated rainfall
It is reported that effective rainfall in the western Nepal started from June 17 and further increased on June 18. Table 2 shows the daily precipitation of Dipayal for consecutive 4 days (as per graph presented by ICIMOD after DHM). The measured flood records (PEP, FO-7) of Mahakali in Sarda barrage for Jun (17-18) are shown in the following hydrograph (Fig. 8).
It is clear from above that the flood at 0100-0200 hrs on June 18 has exceeded all the past records as well as the design discharges of Banbasa and Tanakpur Barrages.

<table>
<thead>
<tr>
<th>Date (Jun-2013)</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall (mm)</td>
<td>05</td>
<td>80</td>
<td>210</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 2: Rainfall records at Dipayal for 4 consecutive days (ICIMOD/DHM)

3. **Floods and Landslides in India**

We have heard, read and seen much in media about recent devastating effect of flood and landslides in Uttarakhand, the northern state of India. As per the report published by the Uttarakhand Space Application Centre (USAC), following possible actions or processes were derived under scientific examination of the events:

i. Heavy rainfall exceeded the saturation limit on 16-17 June and caused heavy landslide

ii. Flash Flood itself caused heavy loss of property

iii. Level in Chaurabari Lake was raised to overflow as a stream

iv. The river upstream of Kedarnath Temple was flooded along with heavy debris flow

v. More channels were formed while entering the Kedarnath area and the debris loaded flood rolled over the houses around the Kedarnath Shrine

vi. Most of the houses in the Kedarnath area were swept away, others were left damaged.

vii. Steep slope of river to Rambara and Gaurikund caused heavy losses in the area with debris deposition.

Besides the Kedarnath area, other high hill centers affected by the floods and landslides in the region are Uttarkashi, Gaumukh, Chamoli, Shrinagar, Pauri, Rudra prayag, Joshimath, Tehri, Dev prayag, Rishikesh, Haridwar, Dehradun and Yamunanagar.
4. **Severe Mahakali Flood at Darchula Headquarter**

Similarity to India

Mahakali River has the sources of glaciers in Himalayas on both sides of Nepal and India. It was analyzed with the help of satellite images in the area and was found that there is no case of glacier slides or avalanche or GLOF. Hence following logical reasons are drawn regarding process of flooding in Mahakali:

- Heavy rainfall and cloud outburst in the area (extreme event)
- Rapid melting of glaciers to add to the run-off due to climate change and increase in the temperature
- Heavy land erosion, slides and mass-movement in the saturated fragile geology
- Heavily debris loaded water flow (flood) triggering further devastation

Difference from India

There is no evidence of failures or openings of natural water bodies adding to more flooding and landslides from the upper catchment. However, local people and the people’s representatives from the area firmly believe that devastation in Darchula was mainly due to sudden opening of sluice gates of the Dhauliganga dam constructed in one of the major tributaries of the Mahakali upstream of Darchula headquarter. The debris flood flushing from the reservoir, with 6.2 million cubic meters of stored water and sediment content, within a short timeframe has exacerbated the situation with the main stream of Kali River already at the critical level simultaneous action has devastated substantial stretch of the River. Unfortunately, without any verification, the Indian
embassy in Kathmandu has however denied the possibility of such incident.

Dhauliganga Dam

Dhauliganga is a tributary of Mahakali River. It is a glacier fed river. Dhauliganga dam is constructed to divert and regulate water for the power generation of 280 MW. The project brochure explains the provision of the sluice spillway and power intake as follows: “The gated spillway and power intake structures are located adjacent to the dam and are designed to minimize the inflow of sediments into the pressure waterways, whilst allowing their efficient flushing from the reservoir during periods of flood.”

The spillway section and general dimensions are shown below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catchment Area</td>
<td>1360 sq.km.</td>
</tr>
<tr>
<td>Design Flood Discharge</td>
<td>3210 cum/s</td>
</tr>
<tr>
<td>Total Power (4x70)</td>
<td>280 MW</td>
</tr>
<tr>
<td>Dam Height</td>
<td>56 m.</td>
</tr>
<tr>
<td>Total Reservoir Capacity</td>
<td>6.20 M.cum.</td>
</tr>
<tr>
<td>Active Reservoir Capacity</td>
<td>1.54 M.cum</td>
</tr>
<tr>
<td>Reservoir Pond Level</td>
<td>1348.50 m</td>
</tr>
<tr>
<td>Power Canal FSL</td>
<td>1345.00 m</td>
</tr>
<tr>
<td>Min. Operating Level</td>
<td>1330.00 m</td>
</tr>
<tr>
<td>Sluice Crest Level</td>
<td>1302.00 m</td>
</tr>
<tr>
<td>Sluice Opening (3x6x10)</td>
<td>180 sq. m.</td>
</tr>
<tr>
<td>Sluice Capacity</td>
<td>3210 cum/s</td>
</tr>
</tbody>
</table>

(Note: Flushing level is the bottom of the reservoir)

Figure 11: Under sluice Spillway Section

Following impressions can be drawn from the data available:

- Crest of Sluices are 46.5 m. below Pond Level and 28.0 m. below the power operating level
- Spillway has full capacity to discharge the design flood (3,210 Cu. m./sec) of the river
- The sluice gates are opened when the reservoir is having sediment or excess water
Further India government made it clear that there was much debris and sediment in the reservoir on the other day of heavy rainfall. Hence it is clear that sluice spillway was fully opened on that day.

5. **Impression on Flood Event of Darchula**

Main cause for the flood in Mahakali River is the unprecedented rainfall in the basin area. Besides, the opening of gates and flushing of debris of Dhauliganga Dam has exacerbated the flood situation further. The 6.2 million cubic meter capacity reservoir with about 3,200 cubic meter per second design discharge could not be operated properly in such extreme situation without the downstream damages. With the sudden opening of gates of Dhauliganga reservoir, it has created surge in the river aggravating already in the critical state of main Mahakali. Encroachment in the low land, mining of river bed materials, inferior river protection works within Nepal, etc. are other minor reasons. Preparedness and coordination between the countries and agencies was clearly lacking in the area. There was no reporting of glacial lake outburst. Effects of each component contributing for the disaster can be obtained only after detailed investigation of the basin area.

Basic information gathered for the occurrence of this event are:

- **c.** On the day of heavy rainfall, the soil of the area was fully saturated already and abruptly failed stability of the upper catchment slopes with the fragile geology, hence created the heavy debris flow was observed.

- **d.** Like other rivers of the vicinity, Dhauliganga carries larger amount of heavy sediment and debris which enters into the reservoir.
e. In Dhauliganga Dam, power channel was closed and sluices were fully opened on the day to flush out the sediment (both incoming and collected earlier).

f. The Dhauliganga's project added effect combined with swelling of main Mahakali River in Tawaghat has created unusual flood which ultimately triggered disaster in Darchula Khalanga area.

g. Embankment protection work on other side in India seems robust and was intact after the event while in Nepalese side it was scattered and weak and easily eroded and washed away.

In Nepal the disaster caused by the flood of the river was extreme. The flood started after midnight of 17 June and people started to evacuate Mainbazaar, Topavan, Bangabazaar, Gholphai, Namaskar and nearby areas. In the morning of June 18, there was mud flow in the river which devastated settlements in Nepalese side.

6. **Effect of Mahakali Flood on Kanchanpur**

As explained earlier, Mahakali River received more than the historical as well as design flood discharge. The gate of under sluices and barrages of both Tanakpur and Banbasa were opened and heavy flood laden with the sediment was discharged downstream of the Banbasa barrage. On right bank, scouring started from Indo-Nepal border and part of the flow diverted to left after striking to strong embankment structure constructed in the Indian territory. The accumulated flow on the left entered Bhujela village through

![Figure 44: Deposition in India, Scouring in Nepal](image)

![Figure 55: Mahakali River in Banbasa-Kanchanpur](image)
the unprotected gap portion between Nepal and adjoining India border. In Bhujela village, settlements and school building were swept away by the flood. The land was either cut down to Mahakali or buried under the sediment carried out by the intruding flood before coming out to Mahakali near Piparia Village. The effect was substantial in the ward nos. 11, 12 & 13 of Bhimdutta Municipality. The situation is depicted in the sketched figure 15 with the photographic evidence in figure 16-19. On the right side, the flood damaged the previously constructed embankment and entered into the villages in Nepal. The effect of flooding, inundation and destruction was observed in various areas under Dodhara and Chandani VDCs.
7. **Public reaction:**

There are many public reactions posted in internet sites from the peoples of both countries. Representative public opinion is shown in figure 20.
Mahakali is basically a border river which forms boundary between Nepal and India at major stretches. In 1996 both the governments entered into a treaty concerning its integrated development. One of the objectives of this treaty is to define the obligations and corresponding rights and duties thereto of the parties in regard to the waters of the Mahakali River and its utilization. The treaty has been ratified by both the parties and is in operation.

No agreement could be reached between the two parties on finalizing the Detailed Project Report of the proposed Pancheshwar Project to be built for mutual benefits under the treaty. Similarly, Mahakali River Commission which was to be formed between the parties under the treaty could not be constituted. The objectives of the commission enter alia was to make recommendation to both the Parties for the conservation and utilization of the Mahakali River as envisaged and provided for in the treaty.

Although some of the above provisions under the treaty have not been implemented several other provisions are in operation. The water under the treaty is being diverted by the Indian side for its use in the Tanakpur Power Station and Banabasa Barrage. Nepal is being supplied with the agreed amount of power from the Tanakpur Power Station, agreement has been reached on the location of the sluice gate for the delivery of water to Nepal from the Tanakpur Barrage, etc.
Under the treaty (Article 7, and 8 read together) each Party has undertaken the obligation of not to use or obstruct or divert the water of the Mahakali River adversely affecting its natural flow and level except by an agreement. This provision of the obligation is applicable in relation to the tributaries of the Mahakali River also.

Dhauliganga is a tributary to the Mahakali River. From the above facts and the reasoning it is clear that the construction and operation of the Dhauliganga Power Project does affect the natural level and flow of the Mahakali River. Government of India constructed the project without even caring for informing the Nepalese side on the details of the project let alone entering into some prior understanding to ensure that its operation would not affect the natural flow of Mahakali River including adverse affect downstream on either side. This is clearly a violation of the treaty obligation on the part of India. Such a behavior is not new to India though, when it comes to dealing with Nepal. Nepal should point out this to the Indian side and impress upon them that they should desist from such behavior in the future. One may even argue for a case of reparation of damages.

This incident of washing away of the establishments at Darchula Khalanga and similarly the flooding in the Mahakali River and the devastation that was caused to Nepal and India does signify the imperative of working together by Nepal and India on the use and conservation of Mahakali River and its tributaries. Therefore, Mahakali River Commission must be established as early as possible to save the loss of life and property on either side in the future.

9. **Conclusions**

There was lack of preparedness, sharing of information and resources and coordination on both sides of the river. It is a general case for both Nepal and India. Lesson should be learnt from such events and improvements in preparedness, rescue and relief activities planned properly and if possible jointly.

- Though Flooding, landslide and debris flow are triggered as natural process, human activities and response also play important role to change their effects
- Response and Preparedness of Government of Nepal was insufficient to address the water induced disaster in the region.
- Information sharing and mutually agreed action plan was not existing between Nepal and India in regard to this water induced disaster.
10. **Recommendations**

- Long term master plan for all the rivers with potential incidents of flooding, bank cutting and inundation are necessary.
- Potential hazards due to heavy landslides and debris flow in higher hills should be studied and protection activities planned accordingly.
- Strong legal provision should be made and wider public are to be educated for controlling unwanted activities in rivers, hills and high mountains.
- Commonly approved mutual benefit program between Nepal and India for boundary rivers should be implemented.
- Implementation of water induced disaster prevention program with strong commitment, stakeholders' participation and sufficient resources should be encouraged.
- Works should be done immediately to protect international boundary between Nepal and India.
- Mahakali Treaty between the two countries must be abided by both the countries and a regular exchange of data and other information on the possible change of regime of the river be exchanged between the two countries.
- To ensure the better utilization and conservation of the Mahakali River the Mahakali River Commission as provided by in the Mahakali Treaty must be established.

Water induced disasters like flood and landslides will occur in future also. We cannot eliminate it. More collection and sharing of information and installation of warning systems are necessary. As the river is international boundary river structural intervention like rigid bank protection is also necessary. Rescue and rehabilitation should be fast and adequate. Time has come for introduction of Insurance of life and property of disaster prone areas. Government could subsidize insurance premium for poor and needy people.